
Preprint
UCRL- JC- 14 1943

This article was submitted to
Joint Association for Computing Machinery Java Grande-
International Scientific Computing in Object-Oriented Parallel

3epartment of Energy Environments Conference, Palo Alto, CA, June 2-4, 2001

ROSETTA: The Compile-
Time Recognition of-
Object-Oriented Library
Abstractions and their use
within user Applications

D. Quinlan, B. Philip

bl "5; Lab ora tory January 8,2001

>

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This work was performed under the auspices of the United States Department of Energy by the
University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

This report has been reproduced directly from the best available copy.

Available electronically at http: / /www.doc.gov/bridge

Available for a processing fee to U.S. Department of Energy
And its contractors in paper from
US. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reports@adonis.osti.gov

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: orders@n tis .fedworld. gov
Online ordering: htb: / /www.ntis.eov/orderinne.htrn

OR

Lawrence Livermore National Laboratory
Technical Information Department's Digital Library

http:/ / www.llnl.gov/ tid/Library.html

mailto:reports@adonis.osti.gov
http://www.llnl.gov

ROSETTA: The Compile-Time Recognition Of
Object-Oriented Library Abstractions And Their Use Within

User Applications

Dan Quinlan and Bobby Philip
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

dquinlan,bobbyp @ Ilnl.gov

ABSTRACT
Libraries arise naturally from the increasing complexity of
developing scientific applications, the optimization of libraries
is just one type of high-performance optimization. Many
complex applications areas can today be addessed by domain-
specific object-oriented frameworks. Such object-oriented
frameworks provide an effective compliment to an object-
oriented language and effictively permit the design of what
ammount to essentially domain-specific languages. The op-
timization of such a domain-specific library/language com-
bination however is particularly complicated due to the in-
ability of the compiler to optimize the use of the libraries
abstractions.

The recognition of the use of object-oriented abstractions
within user applications is a particularly difficult but im-
portant step in the optimization of how objects are used
within expressions and statements.

Such recognition entails more than just complex pattern
matching. The approach presented within this paper uses
specially built grammars to parse the C++ representation.
The C++ representation is itself obtained using a modified
version of the SAGE I1 C/C++ source code restructuing tool
which is inturn based upon the Edison Design Group (EDG)
C++ front-end. ROSETTA is a tool which automatically
builds grammars and parsers from class definitions, asso-
ciated parsers parse abstract syntax trees (ASTs) of lower
level grammars into ASTs of higher level grammars. The
lowest level grammar is that associated with the full C++
language itself, higher level grammars specialize the gram-
mars specific to user defined objects.

‘This work is funded (in part?) by the Department of En-
ergy’s Division of Mathematical, Information, and Compu-
tational Sciences under contract number ???.

The grammars form a hierarchy and permit a high-degree
of specialization in the recognition of complex use of user
defined abstractions.

1. INTRODUCTION
The optimization of object-oriented libraries and particu-
larly the applications that use them has been a longstanding
roadblock to the devleopment of object-oriented scientific
applications. The desire to encapsulate the increasing com-
plexity of parallel scientific computations is a natural driv-
ing force in the continued development of object-oriented
libraries and frameworks for scientific computing. But the
inability of the C++ compiler to optimize the use of abstrac-
tions from such libraries and frameworks forces the use of
awkward lowlevel interfaces or poor performance from high-
level interfaces. A standing problem in the development
of compile-time optimization of user defined object-oriented
abstractions is the inability of the C++ compiler to recog-
nize and optimize their use with applications. That they
are unoptimized by the C++ compiler is essentially because
they are user defined.

The preprocessor approach to optimizations is dificult be-
cause of the complexity of recognizing the use of user de-
fined abstractions within an application. ROSETTA is a
tool for automatically building anotated C++ grammars
and parsers that can recognize complex use of user defined
abstractions at compile-time. Coupled with a separate tool
for introducing source-to-source transformations, ROSE, en-
tire source-to-source compilers can be constructed that op-
erate aheadof the C++ compiler and optimize the perfor-
mance of user defined object-oriented libraries. This paper
details the use and construction of the recognition phase of
this optimization approach.

A Meta-program level is used to define the preprocessor,
this level is a simple C++ application code. The Meta-
program defines the manipulation of grammars using the
ROSETTA library. The output of the Meta-program, when
it is executed, is source code (written to files). The source
code is compiled, with the ROSE infrastructure, to form
a preprocessor specific to a given framework. The Meta-
program can generate a lot of source code, typically 200,000
lines, but it can be compiled in under a minute and once
built into a preprocessor need not be recompiled by the user.

http://Ilnl.gov

2. ROSETTA
ROSETTA is a tool we developed for the manipulation of
grammars. It permits a C++ Meta-program to be defined
which, when executed, builds tools like Sage 11. It is not
a novel part of this work to have defined a mechanism to
generate the Sage I1 source, modified or not. It is a novel
part of this research work that higher-level grammars can be
automatically generated in addition to the Sage I1 source.
This important feature is the mechanism by which critical
parts of the preprocessor are customized for a framework’s
abstractions; and automatically generated.

ROSETTA represents a class library of terminals and non-
terminals used to define a grammar. It is relatively trivial to
define the C++ grammar in terms of terminals and nonter-
minals and associate with the terminals and nonterminals
application code. We consider an implementation of the
grammar to be a library of classes representing the different
language elements defined by a grammar (statements, ex-
pressions, types, etc.). We use the Sage I1 library as a basis
for our C++ grammar, but other libraries that implement
grammars and form the basis of different sorts of compiler
tools exist[?, ?I.

2.1 Generation of the C++ Grammar’s Imple-
mentation

Figure 1 shows the use of ROSETTA in the Meta-program
for the construction of the modified version of Sage 11.

figure*

Here the example program builds the implementation of the
C++ grammar (mostly represented as a copy of the Sage I1
source code with modifications). The output of this appli-
cation is about 70,000 lines of source code. With the output
files compiled into a preprocessor and linked with the ROSE
infrastructure, the final preprocessor parses C++ applica-
tions and unparses them to generate C++ (identical to the
input code in format as well as syntacticly). Such a pre-
processor is of little use for our purposes but forms a trivial
example of a preprocessor built using ROSE.

3. SPECIFICATION OF THE BASE LEVEL
(C++) GRAMMAR

This section explains the construction of the C++ grammar.
This step is particularly simple, the default constructor for
the Grammar class builds the C++ grammar. The code
which is produced is essentially a modified form of the Sage
I1 source code. The C++ code produced in this step can
be compiled with the rest of the ROSE infrastructure to
produce a preprocessor that parses a C++ application into
the C+ grammar as defined by Sage 11. This step represents
steps 1 and 2 above. Numerous features at this level are
available:

1. Traversal of the AST to do program analysis

2. Editing of the AST to introduce transformation

The remaining problem with this level of representation of
the users application code’s AST is that:

1. it is very large

2. a framework’s high-level abstractions are hidden in the
C++ syntax

3. the interactions between a framework’s abstractions
are hidden particularly deep in the C++ syntax.

In principle it should not be difficult to recognize arbitrary
high-level abstractions and their interactions, but our efforts
demonstrated that it is full of practical limitations. Hence
the alternative approach we have implemented and present
in this paper.

3.1 Generation of a High Level Grammar’s
Implementation

This section explains the system of constraints used to de-
fine higher level grammars (higher level and more specific
than the C++ grammar). The principle is to include and
exclude terminals in an existing grammar (the Base gram-
mar for our purposes is the C++ grammar). Terminals are
added or removed as desired to define modifications of the
C++ grammar. As an example, additional terminals can
be added to define additional types represented by a class
defined within an object-oriented framework. New termi-
nals are added through the specification of an existing C++
terminal plus constraints. The form of the constraints can
be varied (and are expressed using C++ code).

As an example, the specification of a class name could be
used to define a new terminal in a new grammar specific to
a class name associated with a framework’s abstraction (as-
suming the abstraction is an object). The result is a gram-
mar for which the framework’s abstraction is recognized as
an implicit type within the higher-level grammar. The use
of the framework’s abstraction within expressions can be
recognized through the addition of expression terminals to
the higher-level grammar. Since all elements of the higher-
level grammar are built from terminals of the C++ grammar
with an additional constraint no modifications to the C++
language are possible. This is a strength of this mechanism
since we want to recognize a framework’s abstractions and
not formally extend the C+-t language.

To further customize the high-level grammar to a particular
framework’s abstractions, the addition of a new type ter-
minal drives the automated introduction of all possible ex-
pression terminals with the constraint that they are between
objects of the new added type. The classes represented by
the new types are further interrogated to define all possi-
ble expressions (member functions of the framework’s ab-
straction) represented by the new type. Similarly statement
terminals are added to represent statements containing ex-
pressions in the new type. Since the addition of new types
adds to the number of terminals (and non terminals) in a
grammar, the size of the grammar’s implementation nearly
doubles. Since this step is fully automated, the amount of
additional code generated is not important. Within this ap-
proach, through the design of the higher level grammars, we
permit user defined types and their expressions and state-
ments to be treated as implicit keywords within an user’s
application.

// include definitions of grammars, terminals, and non-terminals
// (objects within ROSETTA)
#include "grammar. h"

int main0
c

// Build the C++ grammar (generate Sage I1 source)
Grammar sageGrammar;

// Build the header files and source files
// representing the grammar's implementation

sageGrammar . buildcode (1 ;
l

Figure 1: Example Meta-Program for the generation of C++ Grammar (esentially a modified form of SAGE
11).

3.2 Extending the Base Grammar
Terminals and non-terminals can be easily added to the ex-
isting grammar by the specification of new terminals.

A. The inclusion of a new statement type for example
adds an X statement to the existing grammar.
Figure 2 shows how to add a new statement to a gram-
mar.
figure*

B. The addition of a new expression to an existing
grammar is more interesting.
Figure 3 shows how to add a new statement to a gram-
mar.
figure*
An consequence is that the addition of a new expres-
sion element forces the creation of any of any possi-
ble statement (since expressions can be combined into
statements in so many ways). So a set of all possible
statement terminals is defined whenever an expression
terminal is defined.

0 C. The addition of a new type occurs through a well
defined mechanism (the addition of a new class type).
Consequently, with the addition of a new type and
since expressions could be defined with objects of the
new type, a whole set of expressions are added to the
new grammar. Just as with the addition of a new ex-
pression (above) the addition of the set of expressions
forces the addition of all possible statements that can
be defined from the new expressions.
Figure 4 shows how to build a new higher level gram-
mar specific to a given user defined array class.
figure*
Figure 5 shows a shorter form is possible if we are just
interested in adding a type is a specialized member
function (this is an interface issue only).
figure*

3.3 Restrictions of High Level Grammars
At this point the creation of higher level grammars is largely
dubious since we have only defined a mechanism to recognize
the occurance of a user defined type within a program tree

(AST). A similar result could be obtained (perhaps not as
elegantly) through a traversal of the program tree. The
point is to go much farther in the definition of the higher
level grammar and to both expand and restrict the added
elements defining the higher level grammar.

The restriction of a user defined type's use is important in
how it is applied in expressions to define optimizible state-
ments. For new user defined types representing element wise
semantics, Statements containing expressions with user de-
fined functions must disqualify optimization (though a more
complex transformation can be developed). Figure 6 shows
a disqualifying case.

figure*

demonstrates an example of how the higher level grammar
must remove this terminal from it's representation within
the expanded part of the higher level grammar. Thus with-
out it's representation within the grammar such a defined
function would not permit the definition of an expression as
a special (e.g. "X" expression) within the program tree.

Figure 7 shows an example of restriction (removal of ele-
ments from the grammar).

figure*

3.4 Consolidation of types within expanded
grammar

Characteristics of several terminals (within the extended
grammar) can be consolitated within a single terminal. For
example the different variations of loop constructs (for state-
ment, while statement, do-while statement) can be consoli-
dated within a single terminal within the extended grammar.

Figure 8 shows such a consolidation of terminals into a single
terminal.

figure*

3.5 Specification of Predefined Semantics
Although a classification of semantics is not clear at this
point, we can greatly simplify the specification of numer-
ous specialized semantics associated with algebras defined

Terminal & loopstatement = Forstatement I Whilestatement I DoWhileStatement;
X-Grammar.addTerminal(loopStaternent);

Figure 2: Example showing the construction of terminal for a loopstatement.

Terminal & functionExpression = sum I product I reciprocal;
X-Grammar.addTerminal(functionExpression);

Figure 3: Example showing the construction of terminal for an expression.

Grammar sageGrammar ("Cxx-Grammar" ,"Sg", "ROSE,BaseGrammar") ;

// Build the header files and source files representing the grammar's implementation
sageGrammar . buildcode (1 ;

Grammar X-Grammar ("X-Grammar" ,"XG-" ,"ROSE,BaseGrammar" ,&sageGrammar) ;

// Build a new terminal as a copy of an existing terminal (this leverages the
// existing terminals implementation and can be sublemented with constraints).
// Copy a terminal and give it a new name (with a new tag name).
// The copy is then a child of the copied terminal, parsing the parent triggers the
// parsing of the children (constraints are tested and a child is built if a constraint
// test passes, else the parent is built).
// In the tree hierarchy the new terminal is DERIVED from the parent (thus the doubleArrayType
// is derived from the ClassType.
// "specialization" of the X-ClassType terminal).

// Build a constraint (using the SAGE interface) and add it to the new terminal.

This makes sense because the doubleArrayType is a

Terminal & doubleArrayType = X-Grammar . getTermina1 ("ClassType") . copy ("doubleArrayType" , "DOUBLE-ARRAY-TYPE-TAG")

char* constraintstring - "isS ClassDeclarationO && isSgClassDeclaration0 ->getName 0 == \"doubleArray\"" ;
doubleArrayType . addconstraint f"dec1arat ion" , constraintstring) ;

// Adding a terminal to the grammar will automatically place the
// terminal in the correct location within the tree hierarchy

X-Grammar . addNewTermina1 (doubleArrayType) ;

X-Grammar. buildCode0 ;
/ / Build the header files and source files representing the grammar's implementation

Figure 4: Example showing the construction of higher level grammar for a user defined array class.

X-Grammar. addType ("doubleArray") ;

Figure 5: Example showing the addition of a new type to a grammar.

A = B + fooo; // example showing the use of a user defined
// function foo0 which can't be optimized directly.

Figure 6: Example showing case that would not be classified as an array statement.

X-Grammar , removeType (NdoubleArray") ;

Figure 7: Example showing the removal of a type from the grammar.

Terminal & forstatement
Terminal & whilestatement
Terminal & doWhileStatement = X-Grammar.getTerminal("X-DoWhileStatement");
Terminal & 1oopStatement = f orstatement I whilestatement I doWhileStatement ;
X-Grammar.addNewTerminal(1oopStatement);

= X-Grammar .getTerminal ("X-ForStatement") ;
= X-Grammar . getTerminal ("X-Whilestatement") ;

Figure 8: Example showing the consolidation of terminals into a single terminal.

on objects (e.g. arrays, particles, etc which are common
abstractions within scientific computing).

3.5.1 hasCollectionElernentSemantics
Collection Semantics imply that operations defined on the
collection apply element-wise to each of the elements in the
collection. Array objects typically contain such semantics.
The specification of this predefined semantics simplifies the
definition of transformations on objects representing collec-
tions.

3.5.2 hasA rraySemantics
Array semantics imply that operations on the Rhs of an
assignment are completed before any assignment to the Lhs.

3.5.3 hasAsynchronousExecutionSemntics
Asynchronous Execution Semantics imply that operations
between different operands are independent. Thus the de-
pendence can be fully resolved through an analysis of the de-
pendence graph and alias analysis. This is common within
many array classes for example.

3.5.4 Examples
The following example show how such predefined semantics
are specified for a grammar build around the definition of
such a type. Figure 9 shows an example.

figure*

3.6 Examples
Adding a new type and Removing user defined functions
returning new type

4. IMPLEMENTATION
The implementation of ROSETTA builds upon SAGE I1 [?I,
which is built upon the Edison Design Group (EDG) C++
front-end. Our work has been greatly simplified by access
to these two tools. ROSETTA uses a modified form of the
SAGE I1 which we have developed. The purpose was to

0 Permit the automate generation of what is essentialy
a modified version of SAGE I1

Maintain the SAGE I1 source code (so that we can
fix minor bugs and make additions (templates, and
support for new C++ features as supported by EDG))

0 Introduce the use of STL (as an outside library) into
the design of SAGE I1

0 Remove as many asymetries from the implemention of
SAGE I1 so that the generation of the code could be
simplified.

0 Modify the SAGE I1 source to permit it to be used as
a basis for all higher level grammars. This required
naming the classes so that multiple grammars could
coexist (to build hierarchies of grammars) in the same
source-to-source compiler.

While using SAGE I1 as a basis for the grammars that
ROSETTA generates. ROSETTA the significant capabil-
ity to define grammers at the level of BNF notation. C++
classes are used to represent terminals and non-terminals
within the grammar.

Operators (overloaded operators defined for the terminal
and non-terminal classes) are used to define production rules.

5. RESULTS
We have build high level grammars and used them to rec-
ognize and classify the use of user defined abstractions with
numerous applications. The appraoch is particularly sim-
ple since the grammars can be built automatically from the
library header files where the classes are defined. Some addi-
tional information is required if numerous default definitions
are to be overridden. It is not possible within this paper to
present the ASTs for the higher level grammers since graphs
as complex as these are difficult to visualize and we currently
lack mechanisms for there presentation except for debugging
purposes.

6. CONCLUSIONS
The use of object-oriented frameworks can often require
compile-time optimization if the abstractions are not suffiently
coarse grain and the context of the abstractions use is im-
portant. This is the case for numerous sorts of abstractions
for which the statements that use them consist of multiple
expressions. Alternatively, blocks of statements may benifit
from optimizations where there context relative to one an-
other can be optimized. Examples could be array class,
matrix classes, particle classes, finite-element classes, etc.
Since a library can not readily see the context of how it’s
elements are juxaposed, only a compile-time tool can readily
disern the use of object-oriented abstractions within a user’s
application. With the abstract syntax tree exposed, clearly
a relatively simple pattern matching approach could be used
to identify the objects within an applications, but this is not
enought to be useful. To recognize where transformations
can be introduced it is required that the use of the object-
oriented abstractions be identified and classified (into spe-
cific sorts of expressions, statements, types, symbols, etc.).
With this level of detail the AST is greatly simplified and
can be traversed with the intend of optimization, syntax
checking, etc. This level of recognittion is of far greater so-
phistication than searching for funtion names as might be
the limits of the requirements of C or FORTRAN library
optimizations. The sophisticated level of user defined ab-
straction recognition presented within this paper is likely
just as applicable to JAVA, though the extension to other
languages has not be our focus. The target of its use so
far has been within the ROSE source-to-source optimizing
compiler infrastructure.

// Here we endow the "X" class with predefined semantics
// to simplify the specification of the transformations

X . hasCol le c t ionElement Semant i cs (TRUE) ;
X.hasArraySemantics(TRUE);
X.hasAsynchronousExecutionSemantics(TRUE);

Figure 9: Example showing specification of semantics in the grammar.

